fbpx

KIPLER TEJADA

¿Quién es Kipler?

Despertando la imaginación desde hace ya casi 10 años, como una parte de mi vida, aprendiendo y enseñando lo bonito del curso de Geometría; soy el profesor Kipler Tejada Huaman, tengo el honor de dictar en aulas preuniversitarias. Más conocido por mis alumnos de una manera afectuosa como el  profesor “Minino” cuyo nombre se debe a un significado de superación que dejo a vuestra imaginación.

Siendo hoy estudiante en la Universidad Nacional de San Antonio Abad del Cusco de la Facultad de Ingeniería Civil,

cuyas aulas me siguen formando en el  conocimiento y la pedagogía en la enseñanza de mi querido curso de Geometría. Bienvenidos!

¿Qué es lo que aprenderás con Kipler?

SEMANA

CONTENIDO DEL CURSO

1

Del 01 al 06 de Junio.

📌 INTRODUCCIÓN – CONJUNTOS CONVEXOS.-  Nociones básicas de la Geometría. Conceptos primitivos de: Punto, Recta y Plano. Postulados. Figura Geométrica, relación de equivalencia semejanza y congruencia de figuras geométricas. Figuras Geométricas Convexas y no Convexas. Ejercicios.

SEMANA

CONTENIDO DEL CURSO

2

Del 08 al 13 de Junio.

📌 SEGMENTOS.- Recta y segmento de recta, Semirrecta y Rayo. Operaciones con las medidas de los segmentos, máximos y mínimos, cuaterna armónica; Ejercicios.

SEMANA

CONTENIDO DEL CURSO

3

Del 15 al 20 de Junio.

📌 ÁNGULOS Y RELACIONES GRÁFICAS.- Ángulos. Elementos. Clasificación. Ángulos formados por dos rectas paralelas y una recta secante. Propiedades. Ángulos de lados paralelos y ángulos de lados perpendiculares, planteamiento de medidas angulares en el plano geométrico; uniangular y multiangular.

SEMANA

CONTENIDO DEL CURSO

4

Del 22 al 27 de Junio.

📌 TRIÁNGULOS – PROPIEDADES BÁSICAS.- Definición; Propiedades Generales; Clasificación; Líneas notables de un Triángulo; Problemas sobre Propiedades Básicas de los Triángulos demostraciones, construcciones básicas de triángulos tomando en cuenta algunos triángulos notables, Clasificación Propiedades.Triángulos rectángulos cuyos ángulos interiores miden 45°,30° y 60°, 37° y 53°. etc.

SEMANA

CONTENIDO DEL CURSO

5

Del 29 de Junio al 04 de Julio

📌 PUNTOS NOTABLES – RECTA DE EULER – CONGRUENCIA DE TRIÁNGULOS.- Definición de punto notable, sus trascendencias y usos, reconocimiento de dichas líneas, propiedades, teoremas y demostraciones; independientemente; asi como sus relaciones con el triángulo, como el triángulo Órtico o pedal, tangencial, mediano. Congruencia de Triángulos; Problemas sobre Congruencia de Triángulos sus casos más frecuentes y usados como LLL, AL, LAL. Casos especiales y construcciones geométricas usando los casos de congruencia.

SEMANA

CONTENIDO DEL CURSO

6

Del 06 al 11 de Julio.

📌 CUADRILÁTEROS .- Definición, Clasificación, Propiedades, teoremas, demostraciones y construcciones cuadriláteras tomando mucho en cuenta todo lo aprendido en los anteriores temas y específicamente reforzada con la óptica de triángulos. etc. Ejercicios.

SEMANA

CONTENIDO DEL CURSO

7

Del 13 al 18 de Julio.

📌 CIRCUNFERENCIAS .- Definición, Elementos, Ángulos en la circunferencia; Propiedades; Posiciones Relativas de dos Circunferencias Ubicadas en un mismo Plano; Problemas. Puntos Notables de un Triángulo considerando las circunferencias; Teorema de las Tangentes; Teorema de Poncelet; Teorema de Pithot; Teorema de Steiner. 

SEMANA

CONTENIDO DEL CURSO

8

Del 20 al 25 de Julio.

📌 POLÍGONOS -POLÍGONOS REGULARES.- Polígonos. Polígonos convexos de «n» lados: elementos, clasificación y propiedades. Polígonos regulares de tres, cuatro y seis lados: Elementos y propiedades.

SEMANA

CONTENIDO DEL CURSO

9

Del 27 de Julio al 01 de Agosto.

📌 PROPORCIONALIDAD Y SEMEJANZA DE TRIÁNGULOS-RELACIONES MÉTRICAS.- Casos de semejanza de triángulos; Propiedades; Teorema de Thales; Teorema de la Bisectriz Interior; Teorema de la Bisectriz Exterior; Teorema de Menelao; Teorema de Ceva,  demostraciones, Relaciones métricas de triángulos rectángulos y oblicuángulos; propiedades.

SEMANA

CONTENIDO DEL CURSO

10

Del 03 al 08 de Agosto.

📌 ÁREAS.-Áreas de regiones: Poligonales, poligonales regulares y circulares planas convexas. Área de regiones triangulares y cuadriláteras propiedades, semejanza y relaciones entre áreas de regiones. Área de regiones poligonales regulares de tres, cuatro y seis lados. Área del círculo, propiedades y casos combinados. Área de zonas o porciones de regiones circulares.     

SEMANA

CONTENIDO DEL CURSO

11

Del 10 al 15 de Agosto.

📌 GEOMETRÍA DEL ESPACIO INTRODUCCIÓN -POLIEDROS REGULARES.- Rectas y planos en el espacio, ángulos diedros y triedros.Rectas y planos en el espacio. Teorema de las tres perpendiculares. Ángulo diedro y triedro: elemento, clasificación y propiedades. Poliedros. Elementos. Clasificación. Propiedades. Teorema de Euler. Poliedros regulares.

SEMANA

CONTENIDO DEL CURSO

12

Del 17 al 22 de Agosto.

📌 SÓLIDOS GEOMÉTRICOS FUNDAMENTALES.- Área y volumen. Prismas rectos: elementos, áreas y volumen.  Paralelepípedo rectángulo: área y volumen. Tronco de prisma recto:elementos, áreas y volumen. Pirámides rectas: elementos, área y volumen. Tronco de pirámide recta: elementos,áreas y volumen. Pirámides semejantes. Superficies y sólidos de revolución. Cilindro y cono circular recto: elementos, superficie desarrollada, áreas  y volumen. Tronco de cilindro circular recto y de cono circular recto: elementos, superficie desarrollada, áreas y volumen. Esfera: elementos, propiedades, superficie esférica y volumen. Zona y segmento esférico. Área y volumen. Huso y cuña esférica, área y volumen.

Tu educación no puede esperar más.

Necesitas Ayuda?